PROBABILITY DISTRIBUTION

Normal Distribution

- The normal distribution is pattern for the distribution of a set of data which follows a *bell shaped curve*.
- The bell shaped curve has several properties:
 - The curve concentrated in the center and decreases on either side. This means that the data has less of a tendency to produce unusually extreme values, compared to some other distributions.
 - The bell shaped curve is *symmetric*.
 - The total area under the normal curve is equal to 1.
 - The mean, median, mode for a normal distribution all have the same value.

Normal Distribution

Normal Distribution

- The normal distribution is a *continuous probability distribution*. This has several implications for probability.
- Find the area under the curve, means finding the probability of the variables.

Standard Normal Distribution

- The standard normal distribution is that normal variable, X transforms into standard normal distribution, Z with mean, $\mu = 0$ and variance, $\sigma^2 = 1$.
- X~N(μ, σ²)⇒ Z~N(0, 1)

We need standard normal table to look for probabilities.

Standard Normal Distribution

• The standard score (Z score) is defined by the formula

$$Z = \frac{X - \mu}{\sigma}$$

• Its values are usually represented by the symbols z

• We need standard normal table to look for probabilities.

How to Use Standard Normal Probability Table

Z tables give the area in the tails of the normal distribution

- If Z = +, then the area is in the right hand tail
- If Z = -, then the area is in the left hand tail

Tips to Use Standard Normal Probability Table

1. $P(Z > a) = P(Z \ge a) = from \ table$

2. $P(Z < -a) = P(Z > a) = from \ table$

Tips to Use Standard Normal Probability Table (cont.)

3. $P(Z < a) = P(Z \le a) = 1 - P(Z > a)$

4. P(Z > -a) = 1 - P(Z > a) = from table

Tips to Use Standard Normal Probability Table (cont.)

5. P(a < Z < b) = P(Z > a) - P(Z > b)

6. P(-a < Z < -b) = P(Z > b) - P(Z > a)

Tips to Use Standard Normal Probability Table (cont.) 7. P(-a < Z < b) = 1 - P(Z > a) - P(Z > b)

Exercise 1

- 1. If Z~N(0, 1), find
 - (a) P(Z > 0.5)(b) P(Z > 1.03)(c) P(Z < 2.1)(d) P(Z < 0.48)(e) P(Z < -2.33)(f) P(Z > -1.54)(g) P(0.95 < Z < 1.42)(h) P(-2.02 < Z < -0.55)(i) P(-1.32 < Z < 2.20)

Exercise 1 (cont.)

- 2. Given a standard normal distribution, find the value ok *k* such that:
 - (a) P(Z > k) = 0.0268
 - (b) P(Z < k) = 0.8023

Standard Normal Distribution

 Z-score: can use to establish the number of standard deviations from the mean and work out probabilities

$$Z = \frac{X_i - \mu}{\sigma}$$

where X_i = variable value, μ = arithmetic mean, σ = standard deviation

Example 1

Given that X has the normal distribution N(60, 16), find:

- a) P(55<X<63)
- *b) P*(X>49)

Exercise 2

- Suppose a variable has a normal distribution with a mean of 100 and a standard deviation of 10. Find the probability of an individual value (X_i) being:
 - a) 115 or more
 - b) 75 or less
 - c) Between 75 and 115
- The attendance at a night club is normally distributed, with a mean of 80 people and a standard deviation of 12 people. What is the probability that on any given night the attendance is:
 - a) 74 people or more
 - b) 83 people or less
 - c) Between 70 and 85 people?

Central Limit Theorem

 Mostly, the population which the samples are selected is not normally distributed.

Central Limit Theorem

• Even if the *population is not normal*, if sampling is *random* and the sample size (*n*) is \geq **30**, then the distribution of sample *means* can be regarded as *approximately normal* with mean, $\mu_{\bar{x}} = \mu$ and standard deviation, $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

$$\overline{X} \sim N(\mu_{\overline{X}}, \sigma^2_{\overline{X}})$$

 $\overline{X} \sim N(\mu, \frac{\sigma^2}{\sqrt{n}})$

*** Standard error =
$$\frac{\sigma}{\sqrt{n}}$$

Central Limit Theorem

- The greater the sample size, the more confident we can be that any sample statistic represents the 'population' from which the sample is drawn
- We can then still use our Z score and Z tables for calculating probabilities for this distribution of sample means

Example 2

 The output of glass panels has a mean thickness of 4cm and a standard deviation of 1cm. If a random sample of 100 glass panels is taken, what is the probability of the sample mean having a thickness of between 3.9cm and 4.2cm?

Exercise 3

 A production line makes unit which are normally distributed with a mean weight of 200 grams and a standard deviation of 9 grams. What is the probability of a sample of 36 units having a (sample) mean weight of 203 grams or more?