PROBABILITY DISTRIBUTION

Normal Distribution

- The normal distribution is pattern for the distribution of a set of data which follows a bell shaped curve.
- The bell shaped curve has several properties:
- The curve concentrated in the center and decreases on either side. This means that the data has less of a tendency to produce unusually extreme values, compared to some other distributions.
- The bell shaped curve is symmetric.
- The total area under the normal curve is equal to 1.
- The mean, median, mode for a normal distribution all have the same value.

Normal Distribution

Normal Distribution

- The normal distribution is a continuous probability distribution. This has several implications for probability.
- Find the area under the curve, means finding the probability of the variables.

Standard Normal Distribution

- The standard normal distribution is that normal variable, X transforms into standard normal distribution, Z with mean, $\mu=0$ and variance, $\sigma^{2}=1$.
- $X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow Z \sim N(0,1)$

- We need standard normal table to look for probabilities.

Standard Normal Distribution

- The standard score (Z score) is defined by the formula

$$
Z=\frac{X-\mu}{\sigma}
$$

- Its values are usually represented by the symbols z

- We need standard normal table to look for probabilities.

How to Use Standard Normal Probability

Table

Z tables give the area in the tails of the normal distribution

- If $Z=+$, then the area is in the right hand tail
- If $Z=-$, then the area is in the left hand tail

Tips to Use Standard Normal Probability

Table

1. $P(Z>a)=P(Z \geq a)=$ from table
2. $P(Z<-a)=P(Z>a)=$ from table

Tips to Use Standard Normal Probability Table (cont.)
3. $P(Z<a)=P(Z \leq a)=1-P(Z>a)$
4. $P(Z>-a)=1-P(Z>a)=$ from table

Tips to Use Standard Normal Probability Table (cont.)
5. $P(a<Z<b)=P(Z>a)-P(Z>b)$
6. $P(-a<Z<-b)=P(Z>b)-P(Z>a)$

Tips to Use Standard Normal Probability

 Table (cont.)7. $P(-a<Z<b)=1-P(Z>a)-P(Z>b)$

Exercise 1

1. If $Z \sim N(0,1)$, find
(a) $\mathrm{P}(\mathrm{Z}>0.5)$
(b) $P(Z>1.03)$
(c) $\mathrm{P}(\mathrm{Z}<2.1)$
(d) $P(Z<0.48)$
(e) $\mathrm{P}(\mathrm{Z}<-2.33)$
(f) $P(Z>-1.54)$
(g) $\mathrm{P}(0.95<Z<1.42)$
(h) $\mathrm{P}(-2.02<\mathrm{Z}<-0.55)$
(i) $\mathrm{P}(-1.32<\mathrm{Z}<2.20)$

Exercise 1 (cont.)

2. Given a standard normal distribution, find the value ok k such that:
(a) $\mathrm{P}(Z>k)=0.0268$
(b) $\mathrm{P}(\mathrm{Z}<k)=0.8023$

Standard Normal Distribution

- Z-score: can use to establish the number of standard deviations from the mean and work out probabilities

$$
Z=\frac{X_{i}-\mu}{\sigma}
$$

where $X_{i}=$ variable value,
$\mu=$ arithmetic mean, $\sigma=$ standard deviation

Example 1

Given that X has the normal distribution $N(60,16)$, find:
a) $P(55<X<63)$
b) $P(X>49)$

Exercise 2

1. Suppose a variable has a normal distribution with a mean of 100 and a standard deviation of 10 .Find the probability of an individual value $\left(\mathrm{X}_{\mathrm{i}}\right)$ being:
a) $\mathbf{1 1 5}$ or more
b) 75 or less
c) Between 75 and 115
2. The attendance at a night club is normally distributed, with a mean of 80 people and a standard deviation of 12 people. What is the probability that on any given night the attendance is:
a) 74 people or more
b) 83 people or less
c) Between 70 and 85 people?

Central Limit Theorem

- Mostly, the population which the samples are selected is not normally distributed.

Central Limit Theorem

- Even if the population is not normal, if sampling is random and the sample size (n) is $\geq \mathbf{3 0}$, then the distribution of sample means can be regarded as approximately normal with mean, $\mu_{\bar{x}}=\mu$ and standard deviation, $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$

$$
\begin{aligned}
& \bar{X} \sim N\left(\mu_{\bar{x}}, \sigma_{\bar{x}}^{2}\right) \\
& \bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{\sqrt{n}}\right)
\end{aligned}
$$

$$
{ }^{* * *} \text { Standard error }=\frac{\sigma}{\sqrt{n}} * * *
$$

Central Limit Theorem

- The greater the sample size, the more confident we can be that any sample statistic represents the 'population' from which the sample is drawn
- We can then still use our Z score and Z tables for calculating probabilities for this distribution of sample means

Example 2

- The output of glass panels has a mean thickness of 4 cm and a standard deviation of 1 cm . If a random sample of 100 glass panels is taken, what is the probability of the sample mean having a thickness of between 3.9 cm and 4.2 cm ?

Exercise 3

- A production line makes unit which are normally distributed with a mean weight of 200 grams and a standard deviation of 9 grams. What is the probability of a sample of 36 units having a (sample) mean weight of 203 grams or more?

