CN1047 INTRODUCTION TO COMPUTER NETWORKING

CHAPTER 4
OSI MODEL – DATA LINK LAYER

Data Link Layer

- Data Link Layer is second layer of OSI Layered Model.
- This layer is one of the most complicated layers and has complex functionalities and liabilities.
- Data link layer hides the details of underlying hardware and represents itself to upper layer as the medium to communicate.

Data Link Layer

- It takes raw transmission facility and transform it into a line free of transmission errors to network layer.
- It sends acknowledgement for received frames, retransmits frame it is not received by receiver and check for duplicate frames.
- It takes care of a slow receiver.

Data Link Layer

- Data link layer has two sub-layers:
 - Logical Link Control: It deals with protocols, flow-control, and error control
 - Media Access Control: It deals with actual control of media

Framing

- Data-link layer takes packets from Network
 Layer and encapsulates them into Frames.
- Then, it sends each frame bit-by-bit on the hardware.
- At receiver' end, data link layer picks up signals from hardware and assembles them into frames.

Addressing

- Data-link layer provides layer-2 hardware addressing mechanism.
- Hardware address is assumed to be unique on the link.
- It is encoded into hardware at the time of manufacturing.

Synchronization

 When data frames are sent on the link, both machines must be synchronized in order to transfer to take place.

Error Control

- Sometimes signals may have encountered problem in transition and the bits are flipped.
- These errors are detected and attempted to recover actual data bits.
- It also provides error reporting mechanism to the sender.

Flow Control

- Stations on same link may have different speed or capacity.
- Data-link layer ensures flow control that enables both machine to exchange data on same speed.

Multi-Access

- When host on the shared link tries to transfer the data, it has a high probability of collision.
- Data-link layer provides mechanism such as CSMA/CD to equip capability of accessing a shared media among multiple Systems.

- There are many reasons such as noise, crosstalk etc., which may help data to get corrupted during transmission.
- The upper layers work on some generalized view of network architecture and are not aware of actual hardware data processing.
- Hence, the upper layers expect error-free transmission between the systems.

Types of Errors

1. Single bit error

 In a frame, there is only one bit, anywhere though, which is corrupt.

Types of Errors

2. Multiple bits error

 Frame is received with more than one bits in corrupted state.

Types of Errors

3. Burst error

Frame contains more than 1 consecutive bits corrupted.

- Error control mechanism may involve two possible ways:
 - Error detection
 - Error correction

Error Detection

- Errors in the received frames are detected by means of Parity Check and Cyclic Redundancy Check (CRC).
- In both cases, few extra bits are sent along with actual data to confirm that bits received at other end are same as they were sent.
- If the counter-check at receiver' end fails, the bits are considered corrupted.

Error Detection

The receiver simply counts the number of 1s in a frame. If the count of 1s is even and even parity is used, the frame is considered to be not-corrupted and is accepted. If the count of 1s is odd and odd parity is used, the frame is still not corrupted.

Error Correction

- In the digital world, error correction can be done in two ways:
 - Backward Error Correction
 - When the receiver detects an error in the data received, it requests back the sender to retransmit the data unit.
 - Forward Error Correction
 - When the receiver detects some error in the data received, it executes error-correcting code, which helps it to autorecover and to correct some kinds of errors.

Error Correction

- The first one, Backward Error Correction, is simple and can only be efficiently used where retransmitting is not expensive. For example, fiber optics.
- But in case of wireless transmission retransmitting may cost too much.
- In the latter case, Forward Error Correction is used.

Error Correction

- To correct the error in data frame, the receiver must know exactly which bit in the frame is corrupted.
- To locate the bit in error, redundant bits are used as parity bits for error detection.